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Abstract
Magnetoelectronic properties of chiral carbon nanotubes and toroids are studied
for any magnetic field. They are sensitive to the changes in the magnitude
and the direction of the magnetic field, as well as the chirality. The
important differences between chiral and achiral carbon nanotubes include band
symmetry, band curvature, band crossing, band-edge state, state degeneracy,
band spacing, energy gap, and semiconductor–metal transition. Carbon tori
also exhibit the strong chirality dependence on the field modulation of discrete
states. Chiral carbon tori might differ from chiral carbon nanotubes in energy-
gap modulation, density of states, and state degeneracy.

1. Introduction

Since carbon nanotubes (CNTs) were discovered in 1991 by Iijima [1], the great potential
for novel nano-devices has motivated a lot of studies [2–26]. A single-walled carbon
nanotube could be considered as a rolled-up graphite sheet. Its structure is thus fully
specified by the transverse and the longitudinal lattice vectors Rx = ma1 + na2 and Ry =
pa1 + qa2, where a1 and a2 are the primitive lattice vectors of a graphite sheet (details
in [4]). The radius and the chiral angle of a (m, n) carbon nanotube are, respectively,
r = |Rx|/2π = b

√
3(m2 + mn + n2)/2π and θ = tan−1 −√

3n
(2m+n)

. b = 1.42 Å is the C–C bond

length. Nu = 4
√

(m2 + mn + n2)(p2 + pq + q2)/3 is the number of carbon atoms in a
primitive unit cell. The radius is between 3 and 100 Å, and its length can reach several
micrometres.

A carbon nanotube is either metallic or semiconducting, which is mainly determined by its
radius and chirality [2–18]. When the curvature effects due to the misorientation of 2pz orbitals
are taken into account, there are three types of carbon nanotubes: (I) a gapless metal for m = n;
(II) a narrow-gap semiconductor for 2m + n = 3I (where I is an integer and m �= n); and (III)
a moderate-gap semiconductor for others. For type-II and type-III CNTs, their energy gaps
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are, respectively, proportional to 1/r 2 and 1/r . The dependence of energy gap on radius and
chirality has also been verified by scanning tunnelling microscopy (STM) [19, 20]. Specifically,
the current–voltage (I –V ) curves can distinguish metallic CNTs from semiconducting CNTs.
Furthermore, the differential conductance (dI/dV ) is deduced to be proportional to the density
of states (DOS). The dI/dV –V curves show a number of peak structures due to the van Hove
singularities (vHs) of the one-dimensional DOS. Each prominent peak corresponds to the band-
edge state of the parabolic band. The energy difference between two prominent peaks is the
band spacing. Metallic CNTs have a finite conductance at the Fermi energy (EF), whereas
semiconducting CNTs have a vanishing conductance. As for the energy gap Eg, this is the
energy spacing between two prominent peaks nearest to EF. The small band gaps and their
1/r 2 dependence of type-II CNTs are further verified by low-temperature scanning tunnelling
microscopy [21] and transport measurements [22].

The electronic structures of CNTs in the presence of a magnetic field have been studied
within the effective-mass approximation [6] and the tight-binding model [10–16]. The magnetic
field could induce drastic changes in the energy dispersion and energy gap. Furthermore,
electronic properties exhibit periodical Aharonov–Bohm (AB) oscillations with a period of
φ0 = hc/e (the fundamental magnetic flux), if the magnetic field is parallel to the tube
axis and the Zeeman splitting is neglected. Experimentally, the AB effect on CNTs has been
identified by measurements on transport properties [23–26]. In addition to the parallel magnetic
field, the band structures of achiral CNTs have also been investigated theoretically for any
magnetic field [6, 10–18]. The direction of the magnetic field significantly affects the electronic
properties, such as energy dispersion, state degeneracy, and energy gaps.

The two ends of CNTs may be able to knit together seamlessly [27, 28]. Carbon atoms
can form a carbon toroid (CT). A CT is a thin system, since its radius (R) is much larger
than its height (2r ) or width [29–33]. The electronic properties are dominated by the toroid
geometry, such as the radius, height, and chiral angle [34–42]. According to the energy
gap, there are four types of CTs [39]: (I) Eg ∼ 0 (armchair CTs); (II) Eg ∝ 1/r 2; (III)
Eg ∝ 1/r ; and (IV) Eg ∝ 1/R (armchair CTs). Both CTs and CNTs have cylindrical
symmetry. When a magnetic field parallel to the toroid axis is applied, CTs could exhibit
periodic AB oscillations in the absence of the Zeeman splitting, as seen in CNTs. The electronic
structures of achiral CTs were studied for any magnetic field [38–42]. They strongly depend
on the direction and the magnitude of the magnetic field. All of the above-mentioned studies of
magnetoelectronic properties are mainly focused on achiral carbon nanotubes (ACNTs) and
achiral carbon toroids (ACTs). It is worth studying the dependence of magnetoelectronic
properties on the chiral angle.

In this work, we mainly study magnetoelectronic properties of chiral carbon nanotubes
(CCNTs) and chiral carbon toroids (CCTs) using the tight-binding model for any magnetic
field. The curvature effect and the Zeeman splitting are included in the calculations. The
state energy, density of states, and energy gaps are discussed. Our study shows that
magnetoelectronic states are very sensitive to changes in the magnetic field and the chirality.
The magnetic field could induce a shift and a coupling of subbands. Such effects depend on
chirality, and so do the magnetoelectronic properties (band symmetry, band curvature, band
crossing, band-edge state, state degeneracy, band spacing, and energy gap).

2. Theory

The π -electron states of a CNT are calculated within the tight-binding model, as is done for
a graphite sheet. The curvature effect and the periodical boundary condition are taken into
account simultaneously. For the π -band structure of a graphite sheet, the Hamiltonian in the
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subspace built from the two tight-binding functions �A(kx , ky) and �B(kx, ky) is a 2 × 2
Hermitian matrix,

H =
(

0 H12(kx, ky)

H ∗
12(kx , ky) 0

)
, (1)

where H12(kx, ky) = −�3
i=1γi exp(−ik · ri ). The Hamiltonian matrix elements include three

nearest-neighbour interactions. k is the Bloch wavevector, and ri is the relative vector of
the two neighbouring atoms (A atom and B atom). As a result of the misorientation of
2pz orbitals on the nanotube surface, the hopping integrals along the different directions are,
respectively, given by γ1 = γ0[1−b2 sin2 θ/8r 2], γ2 = γ0[1−b2(sin θ +√

3 cos θ)2/32r 2], and
γ3 = γ0[1 − b2(sin θ − √

3 cos θ)2/32r 2] [8]. γ0 (∼2.6 − 3 eV) [4–18] is the hopping integral
of a graphite sheet. The electronic states of a CNT are characterized by the discrete quantum
number (subband) J (=1, 2, . . . , Nu/2) and the longitudinal wavevector ky (−π � ky Ry �
π ). J comes from the transverse boundary condition. The maximum subband index Jmax

depends on the number of atoms in a primitive unit cell (or radius and chiral angle). The similar
quantum numbers could also be found in quantum rings. Ry = |Ry| = b

√
3(p2 + pq + q2) is

the periodic distance along the nanotube axis.
CNTs are in the presence of a uniform magnetic field. The angle between B and the

nanotube axis is α; that is, B = B cos α ŷ + B sin αx̂ = B‖ ŷ + B⊥ x̂ . B‖ induces the
shift J → J + φ cos α/φ0, and B⊥ leads to the coupling of different J s. φ = πr 2 B
is the applied magnetic flux. The vector potential corresponding to B is chosen as A =
r B cos α/2x̂ + r B sin α sin(x/r)ŷ. The vector potential causes the Peierls phase G = ∫

A ·dD
in the tight-binding function. This phase would make the subbands mix with one another;
therefore, the Hamiltonian is characterized by an Nu × Nu Hermitian matrix. The matrix
element associated with the kx state of the A site and the k ′

x state of the B site is given by [16]

〈�B
k′

x
|H |�A

kx
〉 = −2

Nu

∑

RA

∑

RB

γi e
−i�kx xe−i(k′

x +φ cos α/φ0 r)�xe−iky �yei e
h̄ �G, (2)

where the phase difference due to A is

�G = GRA − GRB =






r 2 B sin α
�y

�x

[
cos

x

r
− cos

(x + �x)

r

]
�x �= 0,

r B sin α�y sin
x

r
�x = 0.

(3)

RA = (x, y), RB = (x ′, y ′), and �R = RB − RA = (�x,�y).
The electronic states of a CNT are obtained by diagonalizing the Nu × Nu Hamiltonian

matrix. The state energy is Eh(J, ky, φ, α), where h = v (c) represents the π (π∗) state with
negative (positive) energy. The Zeeman splitting energy is Ez = gσφ/m∗ r 2φ0. g ≈ 2 is the
same as that of the pure graphite. σ = ±1/2 is the electron spin and m∗ is the bare electron
mass. The total energy is Eh(J, ky, φ, α; σ) = Eh(J, ky, φ, α) + Ez . The density of states is
useful in understanding the low-frequency electronic structures. It is defined as

D(ω, φ, α) = 2
∑

J,h=c,v

∫

1stBZ

dky

2π

�

π

1

[ω − Eh(J, ky, φ; α)]2 + �2
. (4)

� = 5 × 10−5γ0 is the broadening parameter.
As for a carbon toroid, its geometric structure is formed by knitting seamlessly the two

ends of a CNT together. R = |Ry|/2π = b
√

3(p2 + pq + q2)/2π is the radius of a CT. 2r ,
twice the radius of a CNT, represents the height of a CT. The additional boundary condition
along the nanotube axis would introduce the longitudinal discrete quantum number L (= ky R).
L = 1, 2, . . . , Nv , and Nv is the greatest common divisor of (p, q). The geometric structure is
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defined by the parameters (m, n, p, q), and each electronic state is characterized by (J, L). Jmax

depends on the toroid height and the chiral angle, while Lmax is determined by the toroid radius.
J and L could serve as good quantum numbers for the electronic states; furthermore, they need
to satisfy conservation laws in optical excitations and inelastic Coulomb scatterings. When a
CT exists in an electromagnetic (EM) field with an electric polarization parallel (perpendicular)
to the symmetric axis, the optical selection rule is �J = ±1 and �L = 0 (�J = 0 and
�L = ±1) [43]. As to the Coulomb excitations in a CT, the transfer of the transverse quantum
number J is conserved in the electron–electron interactions [44]. When a carbon toroid is in
a uniform magnetic field, there is an angle (α) between B and the toroid axis. The effect of
the magnetic field on J is negligible, mainly owing to the large energy spacing between states
with different J s. Moreover, the perpendicular component of B would couple the different Ls.
The calculations on the magneto-band structure of a CT are similar to those of a CNT. The
details could be found in [41]. The DOS of a CT is calculated by replacing the integration of
the wavevector ky in equation (4) with the summation of the discrete quantum number L.

3. Results and discussion

Type-II CCNTs, including the (18,6) CNT (θ = −13.9◦, r = 8.5 Å) and the (18,12) CNT
(θ = −23.4◦, r = 10.24 Å), are first chosen as a model study. The low-energy magneto-band
structures are shown in figures 1(a) and (b). At φ = 0, the two conduction or valence bands
nearest to the Fermi level (EF = 0) are characterized by the subbands Jl and Nu/2−Jl (the solid
curves). The band-edge states are located at the nonzero wavevector ked

y �= 0. They correspond,
respectively, to the (Jl , ked

y ) and (Nu/2− Jl,−ked
y ) states. The energy dispersions are parabolic

near the band-edge states, but linear away from them. Each band is asymmetric about ky = 0;
that is, Ec,v(Jl, ky) �= Ec,v(Jl,−ky). The two bands intersect each other at ky = 0, and their
electronic states are doubly degenerate (Ec,v(Jl, ky) = Ec,v(Nu/2 − Jl,−ky)). The whole
electronic structure is symmetric about ky = 0. Furthermore, there is no band spacing between
two band-edge states.

A parallel magnetic field strongly affects the subbands, and its effects on the (Jl, ky) and
(Nu/2 − Jl ,−ky) states are different. As a result, it would drastically change the electroinc
structure. The energy dispersions are parabolic even away from the band-edge states, and
their curvatures become small. The band symmetry about ky = 0 is destroyed, and the
double degeneracy is absent. The energy bands could no longer intersect at ky = 0. The
band-edge states exhibit a large shift, and there exists an obvious band spacing between them.
Moreover, the energy gap is greatly widened. When the magnetic field gradually deviates from
the nanotube axis, the effects of B on the band structure are getting weak. The band spacing
increases as α grows from 0◦. Then it would decrease with a further increase in α. However,
the opposite is true for the band curvature. At large α, the energp gap, the band spacing, and
the shift of the band-edge states are relatively small. For the perpendicular magnetic field, the
crossing point of the energy bands at ky = 0, the vanishing band spacing, the band symmetry,
and the double degeneracy are recovered to the case of φ = 0. Also note that the energy gap,
band spacing, band-edge states, and band curvature strongly depend on the chiral angle. The
energy gap and band spacing are comparatively large for CCNTs with small chiral angles.

Regarding type-III CCNTs, we select the (16, 2) CNT (θ = −5.8◦, r = 6.7 Å) and
the (16, 8) CNT (θ = −19.1◦, r = 8.3 Å). The magnetoelectronic structures are shown in
figures 1(c) and (d), respectively. They display the change of band curvature, the shift of band-
edge states, the asymmetric band structure about ky = 0 at α �= 90◦, and the destruction of
the double degeneracy at α �= 90◦. There exist certain important differences between type-III
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Figure 1. The low-energy magnetoelectronic structures for the (a) (18, 6), (b) (18, 12), (c) (16, 2),
and (d) (16, 8) CCNTs at φ = 0; φ = 0.25φ0 and different field directions.

CCNTs and type-II CCNTs. As to the former: (I) band crossing is absent except at α = 90◦
or φ = 0; (II) the shift in the wavevector of the band-edge state is less apparent; (III) the band
spacing exhibits a stronger φ-dependence; (IV) the energy gap is relatively large; and (V) the
energy gap grows with increasing α.

It is worth making a detailed comparison of the magnetoelectronic structures between
chiral CNTs and achiral CNTs (e.g. type-I (10, 10), type-II (18, 0) and type-III (17, 0) CNTs
in [16]). As for achiral CNTs, each energy band is symmetric about ky = 0, i.e. Ec,v(J, ky) =
Ec,v(J,−ky). The band symmetry remains unchanged even in the presence of the magnetic
field. The band crossing is absent for the low-energy bands. The double degeneracy arises
from Ec,v(Jl, ky) = Ec,v(Nu/2 − Jl, ky) and Ec,v(Jl, ky) = Ec,v(Jl,−ky) for zizag CNTs
and armchair CNTs, respectively. The magnetic field does not destroy the double degeneracy
of armchair CNTs. The band-edge states of zigzag CNTs always stays at ked

y = 0. Moreover,
those of armchair CNTs have no band spacing. The above-mentioned important differences
further illustrate that chirality plays an important role in magnetoelectronic structures.

The density of states reveals the main features of magneto-band structures, such as the
energy dispersion, state degeneracy, and band spacing. It is associated with the number of
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Figure 2. Density of states for the (a) (18, 6), (b) (18, 12), (c) (16, 2), and (d) (16, 8) CCNTs at
φ = 0; φ = 0.25φ0 and different field directions.

excitation channels and is useful in explaining the optical absorption spectra. The DOS of
type-II CCNTs is shown in figures 2(a) and (b). It could exhibit the asymmetric square-root
divergent peaks. Each peak comes from the band-edge state of a parabolic energy dispersion.
The energy difference between two neighbouring peaks is the band spacing. The peak height is
determined mainly by the inverse of the band curvature and the state degeneracy. The magnetic
field at α �= 90◦ could destroy the double degeneracy and thus induce a pair of peak structures.
Such peaks depend on the chiral angle, and the direction and the magnitude of the magnetic
field. It is relativley easy to observe them in CNTs with small chiral angles (figure 2(a)). A
pair of peaks would gradually approach the Fermi level for an increase in α. Their energy
difference would grow and then decline. However, at α = 90◦ or φ = 0, there only exists a
single weak peak near the right-hand (left-hand) neighbourhood of EF = 0. There are three
main differences between type-III CCNTs and type-II CCNTs in DOS. The former, as shown in
figures 2(c) and (d), exhibit relativley prominent peaks. A pair of peak structures is very clear;
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Figure 3. Flux-dependent energy gaps at different αs for the (a) (18, 6), (b) (18, 12), (c) (16, 2),
and (d) (16, 8) CCNTs. The insets show details of the semiconductor–metal transitions.

that is, their energy difference is much larger than that of the latter. The two peaks are close to
each other as α increases. The predicted DOS could be test by STM, transport measurements,
and absorption spectroscopy.

Quantum effects induced by a magnetic field could effectively modulate the energy gaps of
CNTs. Figures 3(a) and (b) present the magnetic-flux-dependent energy gap of type-II CCNTs
at φ � 0.5φ0 and different αs. The Zeeman splitting, which would reduce the energy gap by
twice |Ez|, is included in the calculations. At φ = 0, the curvature effect induces a small energy
gap. Eg decreases as φ gradually grows. The energy gap would change from a finite value to
zero at a specific magnetic flux φSMT (the insets in figures 3(a) and (b)). The parabolic valence
(spin-up) and conduction (spin-down) bands just intersect at EF = 0, so the semiconductor–
metal transition (SMT) (or the complete energy-gap modulation) occurs at φSMT. These two
energy bands would overlap and then separate from each other on a further increase in φ. As
a result, there are twice the SMTs except at α = 90◦. The Zeeman splitting would metallize
CNTs at φ � φSMT and α = 90◦, since its energy is in excess of the energy gap due to the
perpendicular magnetic field. At small α, the variation of Eg with φ is relatively quick, and



8320 F L Shyu et al

Figure 4. The low-energy magnetoelectronic valence states for the (a) (18, 6, 160,−224),
(b) (18, 12, 196,−224), (c) (16, 2, 140,−238), and (d) (16, 8, 176,−220) CCTs at φ = 0,
φ = 0.25φ0, and different αs.

the magnetic-flux range corresponding to Eg = 0 is comparatively narrow. These two results
directly reflect the fact that the effect of the parallel magnetic field on the band structure is
stronger than that of the perpendicular magnetic field. The φ-dependent energy gap strongly
relies on the chiral angle, while a simple relation between them is absent. Type-III CCNTs also
exhibit similar SMTs, as shown in figures 3(c) and (d). The SMTs occur at φSMT ∼ φ0 /3,
but not close to zero. Moreover, the gapless magnetic-flux range is much larger than that of
type-II CCNTs.

Carbon tori could exhibit a lot of diecrete states, mainly owing to the longitudinal
and transverse periodical boundary conditions. The low-energy electronic states of type-
II (18, 6, 160,−224) and (18, 12, 196,−224) CCTs are shown in figures 4(a) and (b),
respectively. The occupied states are symmetric to the unoccupied states about the Fermi
level EF = 0. At φ = 0, each valence (conduction) state is symmetric about the highest
occupied state (HOS) (the lowest unoccupied states (LUS)). There is an energy gap between
the HOS and the LUS. The energy spacing between states with the same L becomes small
as they are gradually away from the HOS. All of the low-energy electronic states are doubly
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degenerate. The double degeneracy of the HOS comes from E(Jl, Nv) = E(J ′
l , Nv), while

other degenerate states arise from E(Jl, L) = E(J ′
l , Nv − L). A simple relation between Jl

and J ′
l seems to be absent for chiral CTs. Apparently, the HOS, energy spacing, and energy

gap strongly depend on chirality.
The effects of a parallel magnetic field on the degenerate state are different, which thus

leads to the asymmetry of electronic states about the HOS, the destruction of state degeneracy,
the change in the energy gap, and the alternation of the energy spacing. However, the HOS or
the LUS stays at the same L. When the magnetic field deviates from the toroid axis, B⊥ induces
the coupling of different Ls, in addition to the shift of L from B‖. Each state is composed
of different Ls. Here it is characterized by a specific L with the maximum probability. At
φ = 0.25φ0, B⊥ does not alter the principal quantum number of the HOS. Also note that
the specific L of the HOS might be changed at large φ and α = 90◦. The state degeneracy at
α = 90◦ is not recovered to the double degeneracy in the φ = 0 case. State energies are lowered
or raised with an increase in α, which is dependent on L. The energy spacing is reduced as α

increases.
The low-energy magnetoelectronic states of type-III (16, 2, 140,−238) and (16, 8, 176,

−220) CCTs are shown in figures 4(c) and (d), respectively. The more complicated coupling
effects of Ls from B⊥ result in significant differences between type-III CCTs and type-II CCTs.
As to the former: (I) the number of electronic states strongly depends on L as α > 30◦; (II) the
specific L of the HOS might change at α � 30◦; (III) the energy spacing exhibits a stronger
φ-dependence (IV) the energy gap is relativley large; and (V) the energy gap decreases as
α grows.

A detailed comparison is made of magnetoelectronic properties between chiral CTs
and achiral CTs [41]. The main features of the latter are as follows. In the absence
of a magnetic field, the electronic states of armchair (m, m, p,−p) ACTs have double
degeneracy E(Jl, L) = E(m − Jl, Nv − L). Those of zigzag (m, 0, p,−2p) ACTs have
fourfold degeneracy, except the doubly degenerate HOS or LUS. The fourfold and the double
degeneracies come from E(Jl, L) = (2m − Jl, L) = E(Jl , p − L) = E(2m − Jl , p − L) and
E(Jl, p) = E(2m−Jl , p), respectively. The magnetic field would destroy the state degeneracy,
while armchair ACTs recover double degeneracy at α = 90◦. As to zigzag ACTs, they exhibit
double degeneracy for any α. The specific L of the HOS in armchair ACTs might change
at large α and φ, and stays unchanged for zigzag ACTs. Armchair ACTs have the smallest
energy gaps.

The density of states of type-II CCTs, as shown in figures 5(a) and (b), presents a lot of
delta-function-like symmetric peaks due to the quantized discrete states. The height of the
peak represents the state degeneracy, and the distance between two neighbouring peaks is the
energy spacing between two states. The heights of the prominent peaks in the absence of φ

correspond to double degeneracy. At φ �= 0, the destruction of state degeneracy leads to a
pair of peak structures without state degeneracy. Their energy spacing would decrease with
increasing α. Furthermore, a pair of peaks would approach the Fermi level. There are three
main differences between type-II CCTs and type-III CCTs (figures 5(c) and (d)). The latter
exhibit the relativley dense peak structures, the smaller energy spacing, and the opposite α-
dependence for the energy spacing.

The magnetic-flux-dependent energy gap with the Zeeman splitting is shown at φ � 0.5φ0.
At α = 0◦, Egs of type-II CCTs exhibit an oscillatory behaviour during the variation of φ

(figures 6(a) and (b)). Eg reaches its maximum at φ = 0.5φ0 and then decreases. The field
direction could effectively change the dependence of Eg on φ. Such a dependence becomes
weak as α increases. This result clearly illustrates that the shift of L (B‖) has a stronger effect
on the change of state energy, compared with the coupling of Ls (B⊥). Complete energy-gap
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Figure 5. Density of states of the (a) (18, 6, 160,−224), (b) (18, 12, 196,−224),
(c) (16, 2, 140,−238), and (d) (16, 8, 176,−220) CCTs at φ = 0; φ = 0.25φ0 and different
αs.

modulations might happen at large φ (not shown). As for type-III CCTs (figures 6(c) and (d)),
Eg declines monotonously with increasing φ except for the very small AB oscillation about
φ = 0.5φ0 at α = 0◦. Eg decreases with an increase in α, and the dependence of Eg on φ is
relatively strong at large α.

Dimensionalities and geometric structures cause CCTs to differ from CCNTs. These
two systems exhibit the delta-function-like peaks and the square-root asymmetric peaks,
respectively, in the DOS. The double degeneracy is destroyed at α = 90◦ for the former,
but not for the latter. The dependence of the energy gap on α is opposite for type-III CCTs
and CCNTs (figures 3(c), (d), 6(c); (d)). Moreover, complete energy-gap modulations would
happen at different φSMTs.

4. Conclusion

In conclusion, we have studied the magnetoelectronic properties of chiral carbon nanotubes
and tori using the tight-binding model for any magnetic field. The state energy, density of
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Figure 6. The flux-dependent energy gaps of the (a) (18, 6, 160,−224), (b) (18, 12, 196,−224),
(c) (16, 2, 140,−238), and (d) (16, 8, 176,−220) CCTs at different αs.

states, and energy gap strongly depend on the magnitude and direction of the magnetic field,
and the chirality. Chiral carbon nanotubes differ quite a lot from achiral carbon nanotubes
in band symmetry, band curvature, band crossing, band-edge state, state degeneracy, band
spacing, energy gap, and semiconductor–metal transition. For carbon tori, the chirality plays
an important role in the number of discrete states of L, the specific L of the HOS, the
effects of B on energy spacing, the dependence of the energy gap on φ and α, and the state
degeneracy. The important differences between tori and nanotubes include the energy-gap
modulation, the special structures in the density of states, and the state degeneracy. The
predicted magnetoelectronic properties could be verified by STM, transport measurements, and
absorption spectroscopy.
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